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HIERARCHICAL THREE-BODY SYSTEMS

- Configuration:
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HIERARCHICAL THREE-BODY SYSTEMS

- Configuration:

- Hierarchical configurations are COMMON: 
 For binaries with period < 3 days, ≥96% are in systems with 

multiplicity ≥3. (Tokovinin et al. 2006)
 282 of the 299 triple systems (~ 94.3%) are hierarchical. (Eggleton 

et al. 2007)

- Hierarchical 3-body dynamics gives insight for hierarchical 
multiple systems formation/evolution.

r1<<r2r1

r2



OUTLINE

 Dynamical properties:
Flips of inner binary
Eccentricity excitation of the inner binary 

Examples:
Formation of misaligned hot Jupiters
Enhancement of tidal disruption rates for stars 
in galactic nuclei



CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM 

System is stable and can be thought of as interaction 
between two orbital wires (secular approximation):

m1

mJ

m2



 
 Inner wires (1): formed by m1 and mJ. 
 Outer wires (2): m2 orbits the center mass of m1 and mJ.
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 a1/a2 small, expand H in a1/a2 and apply perturbative analysis

CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM 

System is stable and can be thought of as interaction 
between two orbital wires (secular approximation):
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• Octupole level O((a1/a2)3) is zero.

• Quadrupole level O((a1/a2)2):

Lidov-Kozai Mechanism 
(e2 = 0, mJ →0) 

(Kozai 1962; Lidov 1962: 
Solar system objects)
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(axi-symmetric potential).
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✏ characterizes the importance of the octupole order. The Hamiltonian is scaled with
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(Lithwick and Naoz, 2011). J =
p

1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =

p
1� e21 cos i1 is the

ẑ component of the inner orbit’s angular momentum J , and ⌦ is the longitude of
the ascending node of the inner orbit. Specifically, J , ! and Jz, ⌦ are conjugate
momentum and coordinate pairs. We denote e1 as the eccentricity of the inner orbit,
and i1 as the inclination of the inner orbit to the total angular momentum of the
system. In the test particle limit, i1 = i is the mutual inclination between the two
orbits.

In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.
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• Octupole level O((a1/a2)3) is zero.

• Quadrupole level O((a1/a2)2):
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(e2 = 0, mJ →0) 
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Example of Lidov-Kozai Mechanism.
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i=>                                  conserved 
(axi-symmetric potential).

=> when i>40o, e1 and i oscillate with 
large amplitude.

Fquad(J,!, Jz,⌦) =
1

2
(�1 + J2) +

Jz2

J2
+

3(1� J2)Jz2

2J2
+

1� J2

1� Jz2/J2
cos (2!) (1)

Foct(J,!, Jz,⌦) =
5

16
(
p

1� J2 +
3

4
(1� J2)3/2)

h
(1�

11Jz

J
�

5Jz2

J2
+

15Jz3

J3
) cos (! � ⌦)

+ (1 +
11Jz

J
�

5Jz2

J2
�

15Jz3

J3
) cos (! + ⌦)

i

�

175

64
(1� J2)3/2

h
(1�

Jz

J
�

Jz2

J2
+

Jz3

J3
) cos (3! � ⌦)

+ (1 +
Jz

J
�

Jz2

J2
�

Jz3

J3
) cos (3! + ⌦)

i
, (2)

where Hquad = �Fquad and Hoct = �Fquad � ✏Foct, and

✏ =
a1
a2

e2
1� e22

. (3)

✏ characterizes the importance of the octupole order. The Hamiltonian is scaled with
mt

p

Gm1a1tK , where

tK =
8

3
Pin

m1

m2

⇣a2
a1

⌘3

(1� e22)
3/2 (4)

(Lithwick and Naoz, 2011). J =
p

1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =

p
1� e21 cos i1 is the
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e2 ≠ 0 (Eccentric Lidov-Kozai 
Mechanism) or mJ ≠ 0:
(e.g., Naoz et al. 2011, 2013, test particle case: 
Katz et al. 2011, Lithwick & Naoz 2011 ):

Cyan: quadrupole only. 
Red: quadrupole + octupole. Naoz et al 2013

• Jz NOT constant, 
octupole ≠ 0.

• when i>40o: e1 →1.
• when i>40o: i crosses 90o

OCTUPOLE LIDOV-KOZAI MECHANISM 

Jz1

Jz2

i

1 -
 e

1



• Consequence: 
• Produces retrograde 

hot Jupiters (i>90o)
(e.g., Naoz et al. 2011)
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Mechanism) or mJ ≠ 0:
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Misaligned 
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• Consequence: 
• Tidal disruption rate 

enhancement (e1 →1)
(e.g., Chen et al. 2009, Bode 
& Wegg 2014, Li et al. 2015)
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• Consequence: 
• Produces retrograde 

hot Jupiters (i>90o)
(e.g., Naoz et al. 2011)

• Tidal disruption rate 
enhancement (e1 →1)
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OCTUPOLE LIDOV-KOZAI MECHANISM 

e2 ≠ 0 (Eccentric Lidov-Kozai 
Mechanism) or mJ ≠ 0:
(e.g., Naoz et al. 2011, 2013, test particle case: 
Katz et al. 2011, Lithwick & Naoz 2011 ):

Cyan: quadrupole only. 
Red: quadrupole + octupole. Naoz et al 2013

Jz1

Jz2

i

1 -
 e

1

40o < i < 140o



COPLANAR FLIP

• Starting with i ≈ 0, 
e1≥0.6, e2 ≠ 0:

(Li et al. 2014a)

e1→1, i flips by ≈180o 

(Li et al. 2014a). Ѱ
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COPLANAR FLIP

• Starting with i ≈ 0, 
e1≥0.6, e2 ≠ 0:

(Li et al. 2014a)

=> Increase the parameter 
space of interesting 
behaviors.

=> Produces counter 
orbiting hot Jupiters. 

=> Enhance tidal disruption 
rates.

e1→1, i flips by ≈180o 

(Li et al. 2014a).



DIFFERENCES BETWEEN HIGH/LOW I FLIP
• Low inclination flip

• For simplicity: 
take mj →0 => outer orbit 
stationary.

• z direction: angular 
momentum of the outer 
orbit.

• ⬆: direction of J1.

• ⬆: Jz1 => indicates flip.

• Colored ring: inner orbit. 
Color: mean anomaly.

Li et al. 2014a



DIFFERENCES BETWEEN HIGH/LOW I FLIP
• High inclination flip

• For simplicity: 
take mj →0 => outer orbit 
stationary.

• z direction: angular 
momentum of the outer 
orbit.

• ⬆: direction of J1.

• ⬆: Jz1 => indicates flip.

• Colored ring: inner orbit. 
Color: mean anomaly.

Li et al. 2014a



• The Hamiltonian up to the Octupole order: 

• Hamiltonian has two degrees of freedom in test particle limit:
           (                     ,                                , ω, Ω )  

2 conjugate pairs: J & ω, Jz & Ω
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2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.
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i
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where Hquad = �Fquad and Hoct = �Fquad � ✏Foct, and

✏ =
a1
a2

e2
1� e22

. (3)

✏ characterizes the importance of the octupole order. The Hamiltonian is scaled with
mt

p

Gm1a1tK , where

tK =
8

3
Pin

m1

m2

⇣a2
a1

⌘3

(1� e22)
3/2 (4)

(Lithwick and Naoz, 2011). J =
p

1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =

p
1� e21 cos i1 is the

ẑ component of the inner orbit’s angular momentum J , and ⌦ is the longitude of
the ascending node of the inner orbit. Specifically, J , ! and Jz, ⌦ are conjugate
momentum and coordinate pairs. We denote e1 as the eccentricity of the inner orbit,
and i1 as the inclination of the inner orbit to the total angular momentum of the
system. In the test particle limit, i1 = i is the mutual inclination between the two
orbits.

In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.

5

H = F
quad

(J, Jz,!) + ✏F
oct

(J, Jz,!,⌦)

1

Quadrupole order: 
Independent of Ω 

=> Jz constant

: hierarchical 
parameter:

H = F
quad

(J, Jz,!) + ✏F
oct

(J, Jz,!,⌦)
text

✏ = a1
a2

e2

1�e

2
2

1

H = F
quad

(J, Jz,!) + ✏F
oct

(J, Jz,!,⌦)
text

✏ = a1
a2

e2

1�e

2
2

1

Octupole order: 
Depend on both 
Ω & ω => J and 
Jz not constant



CO-PLANAR FLIP CRITERION

• Hamiltonian (at O(i)):
• Evolution of e1 only due to octupole terms:

=> e1 does not oscillate before flip

• Depend on only J1 and ϖ1=ω1+Ω1 
=> System is integrable.
 => e1(t) can be solved. 

  => The flip timescale can be derived.
=> The flip criterion can be derived.

Li et al. 2014a



CO-PLANAR FLIP CRITERION

• Hamiltonian (at O(i)):
• Evolution of e1 only due to octupole terms:

=> e1 does not oscillate before flip

• Depend on only J1 and ϖ1=ω1+Ω1 
=> System is integrable.
=> e1(t) can be solved. 

  => The flip timescale can be derived.
=> The flip criterion can be derived.

Li et al. 2014a

Easier to flip:
e1 larger
ϖ1=ω1+Ω1 ~180o



ANALYTICAL RESULTS V.S. NUMERICAL 
RESULTS 

• The flip criterion and the flip timescale from secular 
integration are consistent with the analytical results.

IC:  i=5o.

Li et al. 2014a



Coplanar Flip: High inclination Flip: 

Caused by the overlap of 
quadrupole and octupole 

resonances, Chaotic: tL~6tK

Quadrupole 
resonances

(e.g., Kozai 1962)

SURFACE OF SECTIONS

Caused by the octupole 
resonance, Regular
(ϖ librates around π)

(Gongjie Li et al. 2014b)



Examples --- 1. Formation of  Misaligned Hot 
Jupiters via Lidov-Kozai Oscillations

Credit: ESA/C. Carreau





Hot Jupiters



SPIN-ORBIT MISALIGNMENT 
(ROSSITER-MCLAUGHLIN METHOD) 

Asymmetry
⇒ misalignment

e.g., Ohta et al. 2005, Winn 2006



OBSERVED SPIN-ORBIT MISALIGNMENT
Solar System: misalignment Ѱ≲ 7o



OBSERVED SPIN-ORBIT MISALIGNMENT

Ѱ
Ѱ

Solar System: misalignment Ѱ≲ 7o



FORMATION OF COUNTER ORBITING HOT 
JUPITERS (LK + TIDE)

Coplanar Flip

e1→
1, A
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ws 
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FORMATION OF COUNTER ORBITING HOT 
JUPITERS (LK + TIDE)

e1 ! 1 during the flip
=>  rp↓, tide dominates. => e1!0, a1↓, i, ψ ≈ 180o.

Li et al. 2014a



FORMATION OF COUNTER ORBITING HOT 
JUPITERS (LK + TIDE)

May produce tidal disruption events
Li et al. 2014a



DIFFICULTY IN THE FORMATION OF COUNTER-
ORBITING HOT JUPITERS

Xue & Suto 2016, Xue et al. 2017

Including short range forces, a small fraction survive and produce 
retrograde planets

No migration



DIFFICULTY IN THE FORMATION OF COUNTER-
ORBITING HOT JUPITERS

Xue & Suto 2016, Xue et al. 2017

Flip condition (with no short range forces) is also a good approximation 
for migration condition 

No migration



FORMATION OF MISALIGNED HOT JUPITERS 
(LK + TIDE) BY POPULATION SYNTHESIS

• 15% of systems produce hot Jupiters
• ELK may account for about 30% of hot Jupiters 
(Naoz et al. 2011)

Naoz et al. 2011



Population synthesis 
study of interaction 
of two giant planets.

FORMATION OF MISALIGNED HOT JUPITERS 
(LK + TIDE) BY POPULATION SYNTHESIS

 => a different 
mechanism is needed
(Petrovich 2015)

Petrovich 2015



Population synthesis 
study of interaction 
of two giant planets.

FORMATION OF MISALIGNED HOT JUPITERS 
(LK + TIDE) BY POPULATION SYNTHESIS

 => a different 
mechanism is needed
(Petrovich 2015)

LK produces ∼ 20% of the observed HJs

Petrovich 2015



FORMATION OF HOT JUPITERS — 
OBSERVATIONAL EVIDENCES

16 Cygni Bb: e = 0.67
Cochran et al. 1996



FORMATION OF HOT JUPITERS

16 Cygni Bb: e = 0.67, can be 
produced by Lidov-Kozai mechanism

Holman et al. 1997



FORMATION OF HOT JUPITERS

credit: exoplanet.eu

Naef et al. 2001



FORMATION OF HOT JUPITERS

Pont et al. 2009

credit: exoplanet.eu

Naef et al. 2001



FORMATION OF HOT JUPITERS

Pont et al. 2009

credit: exoplanet.eu

HD80606b: e = 0.93, can be produced 
by Lidov-Kozai mechanism

Wu & Murray 2003

Naef et al. 2001



FRIENDS OF HOT JUPITERS
Existence an outer companion?

or

LK dominate

LK not dominate
Knutson et al. 2014



47%±7%  of hot Jupiter have stellar companions with a b.t. 50-2000 AU 
based on 77 transiting hot Jupiters

FRIENDS OF HOT JUPITERS

< 16%±5% systems formed via Lidov-Kozai oscillations

Ngo et al. 2016



No correlation between misaligned/eccentric hot Jupiter systems and the 
incidence of stellar companions based on 27 misaligned/eccentric HJs

Ngo et al. 2015

FRIENDS OF HOT JUPITERS



EXAMPLES --- 2. EFFECTS ON STARS 
SURROUNDING SMBHB

image credit: NASA



SMBHBs originate from mergers between galaxies.

EXAMPLES --- 2. EFFECTS ON STARS 
SURROUNDING SMBHB

Multicolor image of NGC 6240. Red p 
soft (0.5–1.5 keV), green p medium (1.5–
5 keV), and blue p hard (5–8 keV) X-ray 
band. (Komossa et al. 2003)

~3kpc

 SMBHBs with mostly ~kpc 
separation have been observed 
with direct imagine. 
(e.g., Woo et al. 2014; Komossa 
et al. 2013, Fabbiano et al. 2011, 
Green et al. 2010, Civano et al. 
2010, Rodriguez et al. 2006, 
Komossa et al. 2003, Hutchings 
& Neff 1989)



STARS SURROUNDING SMBHB

At ~1pc separation it is more difficult to identify SMBHBs. SMBHBs 
can be observed with photometric and spectral features. 

(e.g., Shen et al. 2013, Boroson & Lauer 2009, Valtonen et al. 2008, 
Loeb 2007)

active
BH

inactive
BH

Example of multi-epoch spectroscopy (Shen et al. 2013):

sub-pc distance

active BH dominates the BL 
features, multi-epoch BL features 

=> binary orbital parameters



STARS SURROUNDING SMBHB

At ~1pc separation it is more difficult to identify SMBHBs. SMBHBs 
can be observed with photometric and spectral features. 

(e.g., Shen et al. 2013, Boroson & Lauer 2009, Valtonen et al. 2008, 
Loeb 2007)

Identify SMBHB at ~1 pc separation by stellar features due to 
interactions with SMBHB.  

(e.g., Chen et al. 2009, 2011, Wegg & Bode 2011, Li et al. 2015)



PERTURBATIONS ON STARS SURROUNDING 
SMBHB

Primary BH

Perturbing BH

outer binary

inner

Identify SMBHB at ~1 pc separation by stellar features due to 
interactions with SMBHB.  

(e.g., Chen et al. 2009, 2011, Wegg & Bode 2011, Li et al. 2015)



ENHANCEMENT OF TIDAL DISRUPTION 
RATES
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log[min(1−e1)], ω = 0, ε = 0.03

5tK

e1, max determines the 
closest distance: 
rp ∝ (1-e1)

3tK 5tK

10tK 30tK

emax reaches 1-10-6  over 
~30tK (~Myrs)

Starting at a~106Rt, it’s 
still possible to be 
disrupted in ~30tK!

Li et al. 2014a



• Eccentricity excitation suppressed when precession timescale < Kozai 
timescale. 

(Li et al. 2015)

SUPPRESSION OF ELK

m0 = 107M⦿, m2 = 109M⦿, e1 = 2/3, a2 =0.3 pc, m1 = 1M⦿, e2 = 0.7. (Li et al. 2015)



• Eccentricity excitation suppressed when precession timescale < Kozai 
timescale. 

e1 = 2/3, a2 =0.3 pc, m1 = 1M⦿, e2 = 0.7.

m0 = 107M⦿, m2 = 109M⦿ 

(Li et al. 2015)

SUPPRESSION OF ELK



•   Eccentricity excitation suppressed when precession timescale < 
Kozai timescale.

(Li et al. 2015)

EXAMPLES --- 2. EFFECTS ON STARS 
SURROUNDING SMBHB

a2 = 1.0 pc, e2 = 0.7

log10[m1](M⊙)

lo
g1

0[
m

3]
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⊙
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Saved by NT 
precession

Saved by 
GR 

precessio

• Kozai affects 
more stars when 
perturbing more 
massive SMBH.



SUPPRESSION OF ELK

(Li et al. 2015)



• 57/1000 disrupted; 726/1000 
scattered.

=> Scattered stars may change 
the stellar density profile around 
the SMBH to the shape of a 
donut.

EXAMPLES --- 2. EFFECTS ON STARS 
SURROUNDING SMBHB

(Li et al. 2015)

• Example: m1 = 107 M☉, m2 = 108M☉, a2 

= 0.5pc, e2 = 0.5, Run time: 1Gyr.



• 57/1000 disrupted; 726/1000 
scattered.

=> Scattered stars may change 
stellar density profile around the 
SMBH.

=> Disruption rate can reach 
~10-3/yr.

EXAMPLES --- 2. EFFECTS ON STARS 
SURROUNDING SMBHB

(Li et al. 2015)

• Example: m1 = 107 M☉, m2 = 108M☉, a2 

= 0.5pc, e2 = 0.5, Run time: 1Gyr.



EFFECTS ON STARS SURROUNDING AN IMBH IN 
GC

• Example: m1 = 104 M☉, m2 = 4×106M☉, a2 = 0.1pc, e2 = 0.7 (Run time: 100 
Myr)

IMBH

Sgr A*



• 40/1000 disrupted; 500/1000 
scattered.

=> ~50% stars survived.

=> Disruption rate can reach ~10-4/yr.

EFFECTS ON STARS SURROUNDING AN IMBH IN 
GC

• Example: m1 = 104 M☉, m2 = 4×106M☉, a2 = 0.1pc, e2 = 0.7 (Run time: 100 
Myr)

(Li et al. 2015)



• Example: m1 = 104 M☉, m2 = 4×106M☉, a2 = 0.1pc, e2 = 0.7, α = 1.75 (Run 
time: 100Myr)

(Li et al. 2015)

EFFECTS ON STARS SURROUNDING AN IMBH IN 
GC



CONCLUSION

 Perturbation of the outer object can produce flips of the 
inner orbit and excite inner orbit eccentricity

 Under tidal dissipation, the perturbation of a farther 
companion can produce misaligned hot Jupiters

 Perturbation of a SMBH may enhance the tidal 
disruption rate of stars.



THANK YOU!





Systematic Study of the 
Parameter Space

• Identify the resonances and the chaotic region.

• Characterize the parameter space that give rise 
to the interesting behaviors --- eccentricity 
excitation and orbital flips.



EFFECTS ON STARS SURROUNDING AN IMBH IN 
GC

• Example: m1 = 104 M☉, m2 = 4×106M☉, a2 = 0.1pc, e2 = 0.7 (Run time: 100 
Myr)

IMBH

Sgr A*



• 40/1000 disrupted; 500/1000 
scattered.

=> ~50% stars survived.

=> Disruption rate can reach ~10-4/yr.

EFFECTS ON STARS SURROUNDING AN IMBH IN 
GC

• Example: m1 = 104 M☉, m2 = 4×106M☉, a2 = 0.1pc, e2 = 0.7 (Run time: 100 
Myr)

(Li et al. 2015)



• Example: m1 = 107 M☉, m2 = 108M☉, a2 = 0.5pc, e2 = 0.5, α = 1.75. 
Run time: 1Gyr.

EFFECTS OF EKM ON STARS SURROUNDING 
BBH

(Li et al. 2015)



• Example: m1 = 104 M☉, m2 = 4×106M☉, a2 = 0.1pc, e2 = 0.7, α = 1.75 (Run 
time: 100Myr)

(Li et al. 2015)

EFFECTS ON STARS SURROUNDING AN IMBH IN 
GC



SUPPRESSION OF ELK

(Li et al. 2015)



ROSSITER-MCLAUGHLIN METHOD  
(SPIN-ORBIT MISALIGNMENT)

e.g., Winn 2006



ROSSITER-MCLAUGHLIN METHOD  
(SPIN-ORBIT MISALIGNMENT)

e.g., Winn 2006

Asymmetric
=> misalignment



DIFFERENCES BETWEEN HIGH/LOW I FLIP

Low inclination flips:
e1 ↑ monotonically, inclination stays low before flip.
Flip occurs faster. (Li et al. 2014a)

Low inclination flip High inclination flip



Resonances and Chaotic Regions 

• The Hamiltonian Hres takes form of a pendulum.

Libration

• Two dynamical regions: libration region and circulation 
region.

Circulation

θ

dθ/dt

θ

dθ/dt

Image credit: wikipedia Image credit: wikipedia



Resonances and Chaotic Regions 

• The Hamiltonian Hres takes form of a pendulum.
• Two dynamical regions: libration region and circulation 

region, separated by separatrix.

Libration

Circulation
Separatrix

θ

dθ/dt
Phase Diagram: 



Resonances and Chaotic Regions 

• The Hamiltonian Hres takes form of a pendulum.
• Two dynamical regions: libration region and circulation 

region, separated by separatrix.

Libration

Circulation
Separatrix

θ

dθ/dt

Overlap of resonances can 
cause chaos

−2

0

2

4

p

resonant angle (q)



Surface of Section
Example of a 2-degree freedom H (J, ω, Jz, Ω)

• Resonant zones: points fill 1-D lines.
trajectories are quasi-periodic.

• Chaotic zones: points fill a higher dimension.

(Li et al. 2014b)



Surface of Section
• Surface of section of hierarchical three-body problem in 

the test particle limit in the J – ω Plane.
•                       (specific angular momentum);
ω: argument of periapsis 

Quadrupole 
order 

dominates

Octupole 
order 

stronger

Low i High i ( 40-60o) i~90o
No physical 

solution

low e

high e
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J3
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J3
) cos (! + ⌦)

i
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h
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Jz
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Jz2

J2
+
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J3
) cos (3! � ⌦)

+ (1 +
Jz

J
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Jz2

J2
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Jz3

J3
) cos (3! + ⌦)

i
, (2)

where Hquad = �Fquad and Hoct = �Fquad � ✏Foct, and

✏ =
a1
a2

e2
1� e22

. (3)

✏ characterizes the importance of the octupole order. The Hamiltonian is scaled with
mt

p

Gm1a1tK , where

tK =
8

3
Pin

m1

m2

⇣a2
a1

⌘3

(1� e22)
3/2 (4)

(Lithwick and Naoz, 2011). J =
p

1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =

p
1� e21 cos i1 is the

ẑ component of the inner orbit’s angular momentum J , and ⌦ is the longitude of
the ascending node of the inner orbit. Specifically, J , ! and Jz, ⌦ are conjugate
momentum and coordinate pairs. We denote e1 as the eccentricity of the inner orbit,
and i1 as the inclination of the inner orbit to the total angular momentum of the
system. In the test particle limit, i1 = i is the mutual inclination between the two
orbits.

In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.

5

Low H High H

Li et al. 2014b



Surface of Section
Resonances exist for all surfaces:

Quadrupole 
order 

dominates

Octupole 
order 

stronger

Low i High i ( 40-60o) i~90o

Quadrupole resonances: 
centers at low e1, ω=π/2 and 3π/2 (e.g. Kozai 1962)

low e

high e

Octupole resonances: 
centers at high e1, ω=π or π/2 and 3π/2 Li et al. 2014b



Surface of Section

• e1 excitation (J→0) are caused by octupole resonances.
• Near coplanar flip due to octupole resonances alone.
• High inclination flip due to both quadrupole and 

octupole order resonances.

Quadrupole 
order 

dominates

Octupole 
order 

stronger

Low i i~90oHigh i ( 40-60o)

low e

high e

Li et al. 2014b



Summary
• Hierarchical Three Body Dynamics: 

• Starting with near coplanar configuration, the inner orbit of 
a hierarchical 3-body system can flip by ~180o, and e1 → 1.

• This mechanism is regular, and the flip criterion and 
timescale can be expressed analytically. 

• This mechanism can produce counter orbiting hot 
exoplanets, and can enhance collision/tidal disruption rate.

• Underlying resonances:
• Flips and e1 excitations are caused by octupole resonances. 
• High inclination flips are chaotic, with Lyapunov timescale 

~ 6tK.





Summary
• Coplanar flip: 

• Starting with near coplanar configuration, the inner orbit of 
a hierarchical 3-body system can flip by ~180o, and e1 → 1.

• This mechanism is regular, and the flip criterion and 
timescale can be expressed analytically. 

• This mechanism can produce counter orbiting hot 
exoplanets, and can enhance collision/tidal disruption rate.

• Characterization of parameter space:
• Near coplanar flip and e1 excitations are caused by octupole 

resonances. 
• High inclination flips are chaotic, with Lyapunov timescale 

~ 6tK.



Potential Applications
• Captured stars in BBH systems may affect stellar 

distribution around the BHs (e.g., Ann-Marie Madigan, 
Smadar Naoz, Ryan O'Leary).

• Tidal disruption and collision events for planetary 
systems (e.g., Eugene Chiang, Bekki Dawson, Smadar Naoz).

• Production of supernova (e.g., Rodrigo Fernandez, Boaz Katz, 
Todd Thompson). 

• Other aspects:
• Involving more bodies (e.g., Smadar Naoz, Todd Thompson).
• Obliquity variation of planets.



COHJ Contradict with popular Planets’ 
Formation Theory

• Formation Theory:

•  Planet systems form 
from cloud 
contraction.

•  Spin of the star ends 
up aligned with the 
orbit of the planets



• Hamiltonian has two degrees of freedom:
isolated 3-body: 6 dof                  4 dof                  2 dof      test-particle

2 conjugate pairs: J & ω, Jz & Ω
 (                     ,                                )  

Analytical Overview --- Test Particle Limit
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) cos (3! + ⌦)

i
, (2)

where Hquad = �Fquad and Hoct = �Fquad � ✏Foct, and

✏ =
a1
a2

e2
1� e22

. (3)

✏ characterizes the importance of the octupole order. The Hamiltonian is scaled with
mt

p

Gm1a1tK , where

tK =
8

3
Pin

m1

m2

⇣a2
a1

⌘3

(1� e22)
3/2 (4)

(Lithwick and Naoz, 2011). J =
p

1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =

p
1� e21 cos i1 is the

ẑ component of the inner orbit’s angular momentum J , and ⌦ is the longitude of
the ascending node of the inner orbit. Specifically, J , ! and Jz, ⌦ are conjugate
momentum and coordinate pairs. We denote e1 as the eccentricity of the inner orbit,
and i1 as the inclination of the inner orbit to the total angular momentum of the
system. In the test particle limit, i1 = i is the mutual inclination between the two
orbits.

In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.
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ẑ component of the inner orbit’s angular momentum J , and ⌦ is the longitude of
the ascending node of the inner orbit. Specifically, J , ! and Jz, ⌦ are conjugate
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and i1 as the inclination of the inner orbit to the total angular momentum of the
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In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
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As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.
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orbital plane.
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reference plane.

Pericenter

secular



Analytical Overview
• Hamiltonian (Harrington 1968, 1969; Ford et al., 2000):
• In the octupole order: H = -Fquad-εFoct, ε=(a1/a2)e2/(1-e22)

•  Independent 
of Ω1, Jz const.

•  Depend on 
both ω1 and Ω1 
" both J and Jz 
are not const.



• Hamiltonian (at O(i)):
• Evolution of e1 only due to octupole terms:

=> e1 does not oscillate before flip.

Analytical Derivation for Flip Criterion 
and Timescale

Li et al., 2013

• Depend on only J1 and ϖ1=ω1+Ω1 
=> System is integrable.
 => e1(t) can be solved. 

• Flip at e1, max ~ 1 
  => The flip timescale can be derived.

• Flip when ϖ1=180o

=> The flip criterion can be derived.
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2 conjugate pairs: J & ω, Jz & Ω

Analytical Overview

Fquad(J,!, Jz,⌦) =
1

2
(�1 + J2) +

Jz2

J2
+

3(1� J2)Jz2

2J2
+

1� J2

1� Jz2/J2
cos (2!) (1)

Foct(J,!, Jz,⌦) =
5

16
(
p

1� J2 +
3

4
(1� J2)3/2)

h
(1�

11Jz

J
�

5Jz2

J2
+

15Jz3

J3
) cos (! � ⌦)

+ (1 +
11Jz

J
�

5Jz2

J2
�

15Jz3

J3
) cos (! + ⌦)

i

�

175

64
(1� J2)3/2

h
(1�

Jz

J
�

Jz2

J2
+

Jz3

J3
) cos (3! � ⌦)

+ (1 +
Jz

J
�

Jz2

J2
�

Jz3

J3
) cos (3! + ⌦)

i
, (2)

where Hquad = �Fquad and Hoct = �Fquad � ✏Foct, and

✏ =
a1
a2

e2
1� e22

. (3)

✏ characterizes the importance of the octupole order. The Hamiltonian is scaled with
mt

p

Gm1a1tK , where

tK =
8

3
Pin

m1

m2

⇣a2
a1

⌘3

(1� e22)
3/2 (4)

(Lithwick and Naoz, 2011). J =
p

1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =

p
1� e21 cos i1 is the
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momentum and coordinate pairs. We denote e1 as the eccentricity of the inner orbit,
and i1 as the inclination of the inner orbit to the total angular momentum of the
system. In the test particle limit, i1 = i is the mutual inclination between the two
orbits.

In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.
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1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =
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1� e21 cos i1 is the

ẑ component of the inner orbit’s angular momentum J , and ⌦ is the longitude of
the ascending node of the inner orbit. Specifically, J , ! and Jz, ⌦ are conjugate
momentum and coordinate pairs. We denote e1 as the eccentricity of the inner orbit,
and i1 as the inclination of the inner orbit to the total angular momentum of the
system. In the test particle limit, i1 = i is the mutual inclination between the two
orbits.

In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.
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Quadrupole order: 
Independent of Ω 

=> Jz constant : hierarchical 
parameter:
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Octupole order: 
Depend on both 
Ω & ω => J and 
Jz not constant

• Hamiltonian (Harrington 1968, 1969; Ford et al. 2000): 
In the octupole order:
    Interaction Energy (H) of two orbital wires:



Analytical Derivation for Flip Criterion 
and Timescale

• Hamiltonian (at O(i)) depend on only e1 and ϖ1=ω1+Ω1：
• Evolution of e1 only due to octupole terms:

• e1(t) can be solved => 
The flip criterion and the flip timescale can be derived:

Li, et al., 2013

put equation in hidden slides



FLIP CRITERION

 Averaging the quadrupole 
oscillations in limit jz ～ 0, Katz 

et al. 2011 obtain the constant:

 Requiring jz = 0, during the flip:

Katz et al. 2011

e1,0

i1,0



Analytical Results v.s. Numerical 
Results 

IC: m1 = 1M#, m2 = 0.1M#, a1 = 1AU, a2 = 
45.7AU, ω1 = 0o, Ω1 = 180o, i1=5o.

Li, et al., 2013

Why do analytical 
results with low 
inclination approximation 
work?



Analytical Results v.s. Numerical 
Results 

Li, et al., 2013

Why do analytical 
results with low 
inclination 

approximation work?
Small inclination 

assumption holds for 
most of the evolution.

IC: m1 = 1 M# , mJ=1MJ, m2 = 0.3 M#, ω1 = 0o, Ω1 = 
180o, e2=0.6, a1 = 4 AU, a2 = 50 AU, e1 = 0.8, i = 5o 



Examples --- 1. Produce Counter 
Orbiting Hot Jupiters (+ tide)

Question:
Does this 

mechanism produce 
a peak at ψ≈180o?

No.

Li et al., 2014a



Examples --- 1. Produce Counter 
Orbiting Hot Jupiters (+ tide)

Question:
Will planet be 

tidally disrupted?

Yes!

Li et al., 2014a



Applications --- 1. Produce Counter 
Orbiting Hot Jupiters (+ tide)

• Hot Jupiters: 
• massive exoplanets (m ≥ mJ) with close-in orbits 
(period: 1-4 day).

• Counter Orbiting Hot Jupiters:
• Hot Jupiters that orbit in 

exactly the opposite 
direction to the spin 
of their host star.

• Disagree with the classical planet 
formation theory: 
the orbit aligns with the stellar spin.



Rossiter-McLaughlin Method

http://www.subarutelescope.org/



FORMATION OF MISALIGNED HOT JUPITERS 
(LK + STELLAR OBLATENESS + TIDE)

Mp < 3 MJ 
=> bimodal

Mp ～ 5MJ

=> low 
misalignment 
(solar-type stars)
=> higher 
misalignment 
(more massive 
stars) Anderson et al. 2016

Anderson et al. 2016: 



FORMATION OF MISALIGNED HOT JUPITERS 
(LK + STELLAR OBLATENESS + TIDE)

Storch & Lai 2015

SL 

If the host star is spinning and oblate, gravity from the planet makes 
stellar spin precess around L, and can cause chaos under Lidov-Kozai 
oscillations (Storch & Lai 2015).

Chaos: precession period ～ Lidov-Kozai oscillation period 



Take Home Message
• Eccentric Coplanar Kozai Mechanism can flip 

an eccentric coplanar inner orbit to produce 
counter orbiting exoplanets

Eccentric inner orbit flips due to eccentric coplanar 
outer companion





• Distribution of sky projected spin-orbit angle 
(λ) of Hot Jupiters

Observational Links to Counter Orbiting Hot 
Jupiters

λ

There are retrograde hot 
jupiters (λ>90o)

It is possible to have 
counter orbiting planets. 



Applications --- 2. Effects of EKM of 
Stars Surrounding BBH

Tidal disruption rate is highly uncertain:
It is observed to be 10-5~-4/galaxy/yr from a very small sample 
by Gezari et al. 2008.
It roughly agrees with theoretical estimates. (e.g. Wang & 
Merritt 2004)

 The disruption rate may be greatly enhanced: 
due to non-axial symmetric stellar potential. (Merritt & Poon 
2004)
due to SMBHB (Ivanov et al. 2005, Wegg & Bode 2011, Chen et 
al. 2011)
due to recoiled SMBHB (Stone & Loeb 2011)



• Example: m1 = 107 M☉, m2 = 108M☉, a2 = 0.5pc, e2 = 0.5, α = 1.75 
(stellar distribution), normalized by M-σ relation. Run time: 1Gyr.

Examples --- 3. Effects of EKM of Stars Surrounding 
BBH

(Li, et al. 
submitted 2015)



• Example: m1 = 104 M☉, m2 = 4×106M☉, a2 = 0.1pc, e2 = 0.7, α = 1.75 
(stellar distribution), normalized by M-σ relation. Run time: 100Myr.

Examples --- 3. Effects of EKM of Stars Surrounding 
BBH

(Li, et al. 
submitted 2015)



COMPARISON OF TIMESCALES



STARS SURROUNDING SMBHB

At ~1pc separation it is more difficult to identify SMBHBs. SMBHBs 
can be observed with spectral features. 

(e.g., Shen et al. 2013, Boroson & Lauer 2009, Valtonen et al. 2008, 
Loeb 2007)

active
BH

inactive
BH

Example of multi-epoch spectroscopy (Shen et al. 2013):

sub-pc distance

active BH dominates the BL 
features, multi-epoch BL features 

=> binary orbital parameters



COPLANAR HIGH ECCENTRICITY MIGRATION

Population 
synthesis study. 

tv=0.1yr



Initial v.s. Final Distribution
• Example: m1 = 106 M☉, m2 = 1010M☉, a2 = 1pc, e2 = 0.7, α = 1.75 

(stellar distribution), normalized by M-σ relation. Run time: 1Gyr.
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Initial Condition in i
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Figure 11: The inclination in the J � ! plane (⌦ = 0).

Ω

J
z

 

 

0 5
−1

−0.5

0

0.5

1

Ω

J
z

 

 

0 5
−1

−0.5

0

0.5

1

Ω

 

 

0 5
−1

−0.5

0

0.5

1

Ω

 

 

0 5
−1

−0.5

0

0.5

1

Ω

 

 

0 5
−1

−0.5

0

0.5

1

Ω

 

 

0 5
−1

−0.5

0

0.5

1

Ω

 

 

0 5
−1

−0.5

0

0.5

1

Ω

 

 

0 5
−1

−0.5

0

0.5

1

Ω

 

 

0 5
−1

−0.5

0

0.5

1

0

0.5

1

Ω

 

 

0 5
−1

−0.5

0

0.5

1

0

0.5

1

e
1

e
1

Figure 12: The eccentricity on the Jz � ⌦ plane (! = 0). Similar to Figure 4, in the
first row, ✏ = 0.001 and in the second row, ✏ = 0.1. The octupole terms are more
dominated when ✏ is bigger.

20



Maximum e1 for different H 
and ϵ

Maximum e1  for low i, high e1 case, and high i cases



Surface of Section

• Trajectories chaotic only for H=-0.5, -0.1 at high ϵ .
• High inclination flips are chaotic. 
• Overall evolution of the trajectories: evolution sensitive 

on the initial angles.

Quadrupole 
order 

dominates

Octupole 
order 

stronger

Low i i~90oHigh i ( 40-60o)

low e

high e

Li et al. 2014b



Surface of Section
• Surface of section in the Jz – Ω plane

                                       Ω: longitude of node

Quadrupol
e order 

dominates

Octupole 
order 

dominates

Low i, high e1 High i, low e1
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where Hquad = �Fquad and Hoct = �Fquad � ✏Foct, and
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✏ characterizes the importance of the octupole order. The Hamiltonian is scaled with
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(Lithwick and Naoz, 2011). J =
p

1� e21 is the angular momentum of the inner
orbit, ! is the argument of periapsis of the inner orbit, Jz =

p
1� e21 cos i1 is the

ẑ component of the inner orbit’s angular momentum J , and ⌦ is the longitude of
the ascending node of the inner orbit. Specifically, J , ! and Jz, ⌦ are conjugate
momentum and coordinate pairs. We denote e1 as the eccentricity of the inner orbit,
and i1 as the inclination of the inner orbit to the total angular momentum of the
system. In the test particle limit, i1 = i is the mutual inclination between the two
orbits.

In the quadrupole limit, the Hamiltonian is independent of ⌦, so Jz is constant,
and the system is integrable. In addition, the angle ! = $ � ⌦ is the resonant
angle of the system, where $ is the longitude of the periapsis. When i > 39.2�, the
solution admits a resonant region and e1 and i exhibit large amplitude oscillations.
Particularly, e1 may be excited to high values starting from e1 ⇠ 0 (e.g. Morbidelli,
2002).

As mentioned in the introduction, the octupole order adds variations in Jz which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to
be excited very close to 1 (Lithwick and Naoz, 2011; Katz et al., 2011; Naoz et al.,
2012, 2013). We work with the Hamiltonian at the octupole level of approximation
to analyze the surface of section and the chaotic behaviors in the next sections.

5

• All features are due to octupole effects.
• Trajectories are chaotic only possible when H=-0.5, -0.3, -0.1, for 

high ϵ.
Li et al. 2014b



Characterization of Chaos 

• Chaotic when H≤0 (correspond to high i cases).
• In chaotic region, Lyapunov timescale tL=(1/λ) ≈ 6tK.
(tK corresponds to the oscillation timescale of e1 and i)

• Lyapunov exponents (λ): λ↑, more chaotic.

Log(λ)

Li et al. 2014b



Surface of Section

• All features are due to octupole effects.
• Trajectories are chaotic only when H≤0.
• Flips are due to octupole resonances. (Li, et al., 2014 in 

prep)

Quadrupol
e order 

dominates

Octupole 
order 

dominates

Low i, high e1 High i, low e1



Applications --- 2. Tidal Disruption of 
Stars Surrounding BBH

SMBHBs originate from mergers between galaxies. Following the 
merger, the distance of the SMBHB decreases. 
(Complete numerical simulations: e.g. Khan et al. 2012)
 SMBHBs with ~kpc separation have been observed with direct 
imagine. 
(e.g. Fabbiano et al. 2011, Green et al. 2010, Civano et al. 2010, 
Komossa et al. 2003, Hutchings & Neff 1989)

At ~1pc separation it is more difficult to identify SMBHBs. 
SMBHBs have been observed with optical spectra, light variability 
and radio lines. 

(e.g. Boroson & Lauer 2009, Valtonen et al. 2008, Rodriguez 
et al. 2006)

Motivation of tidal disruption of stars by ~1pc SMBHB:
Identify SMBHB at ~1 pc separation with tidal disruption rate



Effects on Stars Surrounding BBH

Dynamics of stars around BH or BBH:
Secular dynamics introduce instability in eccentric stellar 
disks around a single BH (e.g. Madigan, Levin & Hopman 
2009)
Tidal disruption event rate can be enhanced due to BBH 
and the recoil of BBH (Ivanov et al. 2005, Wegg & Bode 2011, 
Chen et al. 2011, Stone & Loeb 2011)
Relic stellar clusters of recoiled BH may uncover MW 
formation history (e.g. O’Leary & Loeb 2009). 

Here we study the effect of EKM to stars 
surrounding BBH



• Study the role of eccentric (e2 ≠ 0) Kozai mechanism in the 
presence of general relativistic (GR) precession and 
Newtonian (NT) precession for stars surrounding SMBHB. 

a2 = 1.0 pc, e2 = 0.7
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assuming ρ* ∝ a-1.75, 
normalized by M-σ relation.

•  N* is the number of stars 
affected by the eccentric 
Kozai Mechanism. 
(Requirement: tGR < tKozai, 
tNT < tKozai, ε < 0.1, a1 < rRL).
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Effects of EKM on Stars Surrounding 
BBH

(Li, et al., in prep)



a2 = 1.0 pc, e2 = 0.7
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• Example: m1 = 106 M☉, m2 

= 1010M☉, a2 = 1pc, e2 = 0.7, 
Run time: 1Gyr.

• 14/1000 disrupted; 535/1000 
captured. Disruption/capture 
timescales are short. 

log10[t] (yr) Capture/
D

isruption tim
escale

(Li, et al., in prep)

Effects of EKM on Stars Surrounding 
BBH

=> Captured stars may change 
stellar density profile of the 
other BH

=> With rapid diffusion, 
disruption rate ~10-3/yr.



• Resonant zones: points fill 1-D lines.
trajectories are quasi-periodic.

• Chaotic zones: points fill a higher dimension.
trajectories are chaotic.

(Li et al. 2014b)

SURFACE OF SECTION



SURFACE OF SECTION

Quadrupole 
order 

dominates

Octupole 
order 

stronger

Low i High i ( 40-60o) i~90o

Quadrupole resonances: 
centers at low e1, ω=π/2 and 3π/2 (e.g., Kozai 1962)

low e

high e

Octupole resonances: 
centers at high e1, ω=π or π/2 and 3π/2 Li et al. 2014b

quadrupole 
resonances

octupole 
resonances

octupole 
resonances



SURFACE OF SECTION

Quadrupole 
order 

dominates

Octupole 
order 

stronger

Low i High i ( 40-60o) i~90o

low e

high e

Octupole resonances: responsible for e →1

Li et al. 2014b

quadrupole 
resonances

octupole 
resonances

octupole 
resonanceschaos

Chaos: overlap of quadrupole and octupole resonances
high inclination flips



CHARACTERIZATION OF CHAOS  

Chaotic when H≤0 (correspond to high i cases).

• In chaotic region, Lyapunov timescale tL=(1/λ) ≈ 6tK.
(tK corresponds to the oscillation timescale of e1 and i)

Li et al. 2014b

Ω0=0, 
⍵0=π/2,

e0=0 

Log(λ)



DIFFERENCES BETWEEN HIGH/LOW I FLIP

Low inclination flips:
e1 ↑ monotonically, inclination stays low before flip.
i stays low before flip. (Li et al. 2014a)

Low inclination flip High inclination flip



HIERARCHICAL THREE-BODY SYSTEMS

- Configuration:

- Hierarchical configurations are COMMON: 
 For binaries with periods shorter than 10 days, >40% of them are 

in systems with multiplicity ≥ 3. (Tokovinin 1997)
 For binaries with period < 3 days, ≥96% are in systems with 

multiplicity ≥3. (Tokovinin et al. 2006)
 282 of the 299 triple systems (~ 94.3%) are hierarchical. (Eggleton 

et al. 2007)
- Hierarchical 3-body dynamics gives insight for hierarchical 
multiple systems.

r1<<r2r1

r2



 For stellar systems:

e.g., Harrington 1969; Mazeh & 
Shaham 1979; Ford et al. 2000; 
Eggleton & Kiseleva-Eggleton 
2001; Fabrycky & Tremaine 
2007; Shappee & Thompson 2013

e.g., Perets & Fabrycky 2009;
Naoz & Fabrycky 2014

e.g., Katz & Dong 2012; 
Kushnir et al. 2013

Short Period 
Binaries Blue Stragglers

Type Ia Supernova

Image credit: NASA/Tod Strohmayer/Dana Berry 

Image credit: wikipedia

EXAMPLES OF HIERARCHICAL 3-BODY 
DYNAMICS



EXAMPLES OF HIERARCHICAL 3-BODY 
DYNAMICS

 Exoplanetary systems:

Eccentric Orbits
Exoplanets with large spin-

orbit misalignment

e.g., Holman et al. 1997; Ford et al. 
2000; Wu & Murray 2003; e.g., Fabrycky & Tremaine 2007; Naoz et al. 

2011, 2012; Petrovich 2015; Storch et al. 
2014; Anderson et al. 2016

Image credit: wikipedia

Image credit: ESO/A. C. Cameron



 Black hole systems:

e.g., Blaes et al. 2002; Miller & Hamilton 
2002; Wen 2003; Bode & Wegg 2014; 

e.g., Chen et al. 2009, 2011; Wegg & Bode 
2011; Li et al. 2015

Merger of short period 
black hole binaries Tidal disruption events

Image credit: NASA / CXC / A. Hobart Image credit: NASA/CXC/M.Weiss

EXAMPLES OF HIERARCHICAL 3-BODY 
DYNAMICS



Spin-orbit Misalignment

No correlation between misaligned/eccentric hot Jupiter 
systems and the incidence of stellar companions

Ngo et al. 2015



Eccentric Proto-Hot Jupiters

High e migration

Existence of eccentric porto-
Hot Jupiters?

LK dominate

eccentric proto-
HJs

Socrates et al. 2011



Proto-Hot Jupiters
A paucity of proto-hot Jupiters on super-eccentric orbits

Dawson et al. 2015
<44% formed via LK mechanism



Closer Companions of  Hot Jupiters

High e migration
=> No close companions

Existence a closer companion?

LK dominateLK not dominate



Closer Companions of  Hot Jupiters

Schlaufman & Winn 2016

 Hot Jupiters (<  10 days) are no more or less likely to have exterior 
companions than giant planets (>10 days) 
=> high e migration does not dominate


